Emerging Trends in Vaccine Development Integrating Pharmaceutical Science with Public Health
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Aswathy, R., & Sumathi, S. (2024). The evolving landscape of cervical cancer: breakthroughs in screening and therapy through integrating biotechnology and artificial intelligence. Molecular Biotechnology, 1-17. https://doi.org/10.1007/s12033-024-01124-7
Blass, E., & Ott, P. A. (2021). Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature reviews Clinical oncology, 18(4), 215-229. https://doi.org/10.1038/s41571-020-00460-2
Bok, K., Sitar, S., Graham, B. S., & Mascola, J. R. (2021). Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity, 54(8), 1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017
Bourgois, P., Holmes, S. M., Sue, K., & Quesada, J. (2017). Structural vulnerability: operationalizing the concept to address health disparities in clinical care. Academic Medicine, 92(3), 299-307. https://doi.org/10.1097/ACM.0000000000001294
Bukhari, M. H., Syed, M., & Zain, S. (2021). The differences between traditional vaccines and RNA vaccines: safety, efficacy, reliability and future of COVID-19 vaccines. Annals of King Edward Medical University, 27(2).
Cao, P., Xu, Z. P., & Li, L. (2022). Tailoring functional nanoparticles for oral vaccine delivery: Recent advances and future perspectives. Composites Part B: Engineering, 236, 109826. https://doi.org/10.1016/j.compositesb.2022.109826
Cheng, J., Liang, T., Xie, X. Q., Feng, Z., & Meng, L. (2024). A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discovery Today, 103984. https://doi.org/10.1016/j.drudis.2024.103984
Dawadi, S. (2020). Thematic analysis approach: A step by step guide for ELT research practitioners. Journal of NELTA, 25(1-2), 62-71. https://doi.org/10.3126/nelta.v25i1-2.49731
Defendi, H. G. T., da Silva Madeira, L., & Borschiver, S. (2021). Analysis of the COVID-19 vaccine development process: an exploratory study of accelerating factors and innovative environments. Journal of Pharmaceutical Innovation, 1-17. https://doi.org/10.1007/s12247-021-09535-8
Dellepiane, N. (2007). Small Businesses for High Targets: Strategies in Industrially Exploiting the DNA–RNA Biomechanisms. In Handbook of Research on Techno-Entrepreneurship. Edward Elgar Publishing. https://doi.org/10.4337/9781847205551.00025
Dewaker, V., Morya, V. K., Kim, Y. H., Park, S. T., Kim, H. S., & Koh, Y. H. (2025). Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomarker Research, 13(1), 52. https://doi.org/10.1186/s40364-025-00764-4
Elliott, T., Cheeseman, H. M., Evans, A. B., Day, S., McFarlane, L. R., O’Hara, J., ... & Shattock, R. J. (2022). Enhanced immune responses following heterologous vaccination with self-amplifying RNA and mRNA COVID-19 vaccines. PLoS pathogens, 18(10), e1010885. https://doi.org/10.1371/journal.ppat.1010885
Frost, I., Sati, H., Garcia-Vello, P., Hasso-Agopsowicz, M., Lienhardt, C., Gigante, V., & Beyer, P. (2023). The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. The Lancet Microbe, 4(2), e113-e125. https://doi.org/10.1016/s2666-5247(22)00303-2
Gholap, A. D., Gupta, J., Kamandar, P., Bhowmik, D. D., Rojekar, S., Faiyazuddin, M., ... & Kumarasamy, V. (2023). Harnessing nanovaccines for effective immunization─ a special concern on COVID-19: facts, fidelity, and future prospective. ACS biomaterials science & engineering, 10(1), 271-297. https://doi.org/10.1021/acsbiomaterials.3c01247
Ghosh, A., Larrondo-Petrie, M. M., & Pavlovic, M. (2023). Revolutionizing vaccine development for COVID-19: a review of AI-based approaches. Information, 14(12), 665. https://doi.org/10.3390/info14120665
Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research synthesis methods, 11(2), 181-217. https://doi.org/10.1002/jrsm.1378
Haghighi, E., Abolmaali, S. S., Dehshahri, A., Mousavi Shaegh, S. A., Azarpira, N., & Tamaddon, A. M. (2024). Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. Journal of Nanobiotechnology, 22(1), 710. https://doi.org/10.1186/s12951-024-02972-w
He, H., Chen, Z., Wang, R., Liu, X., & Liu, H. (2024). Master-Slave Heterogeneous Surveillance System Oriented to High-Speed Railway Lines Security. IEEE Sensors Journal. http://dx.doi.org/10.1109/JSEN.2024.3493932
Jafari, A., Danesh Pouya, F., Niknam, Z., Abdollahpour Alitappeh, M., Rezaei-Tavirani, M., & Rasmi, Y. (2022). Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Molecular biology reports, 49(6), 4943-4957. https://doi.org/10.1007/s11033-022-07132-7
Jain, S., Venkataraman, A., Wechsler, M. E., & Peppas, N. A. (2021). Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced drug delivery reviews, 179, 114000. https://doi.org/10.1016/j.addr.2021.114000
Kumar, R., Srivastava, V., Baindara, P., & Ahmad, A. (2022). Thermostable vaccines: An innovative concept in vaccine development. Expert Review of Vaccines, 21(6), 811-824. https://doi.org/10.1080/14760584.2022.2053678
Lefin, N., Herrera-Belén, L., Farias, J. G., & Beltrán, J. F. (2024). Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Molecular diversity, 28(4), 2365-2374. https://doi.org/10.1007/s11030-023-10718-3
Legge, D. G., & Kim, S. (2021). Equitable access to COVID-19 vaccines: cooperation around research and production capacity is critical. Journal for Peace and Nuclear Disarmament, 4(sup1), 73-134. https://doi.org/10.1080/25751654.2021.1906591
Liston, A., Humblet-Baron, S., Duffy, D., & Goris, A. (2021). Human immune diversity: from evolution to modernity. Nature immunology, 22(12), 1479-1489. https://doi.org/10.1038/s41590-021-01058-1
Mao, W., Zimmerman, A., Hodges, E. U., Ortiz, E., Dods, G., Taylor, A., & Udayakumar, K. (2023). Comparing research and development, launch, and scale up timelines of 18 vaccines: lessons learnt from COVID-19 and implications for other infectious diseases. BMJ Global Health, 8(9), e012855.
Masturapratiwi, H. A., Nurhalizah, S., & Utami, H. . (2024). Assessing the Effectiveness of Vaccination Programs in Reducing Childhood Diseases. Journal of Asian-African Focus in Health, 2(3), 103–110. https://doi.org/10.71435/595705
McGoldrick, M., Gastineau, T., Wilkinson, D., Campa, C., De Clercq, N., Mallia-Milanes, A., ... & Desai, S. (2022). How to accelerate the supply of vaccines to all populations worldwide? Part I: Initial industry lessons learned and practical overarching proposals leveraging the COVID-19 situation. Vaccine, 40(9), 1215-1222. https://doi.org/10.1016/j.vaccine.2021.12.038
Nagy, A., & Alhatlani, B. (2021). An overview of current COVID-19 vaccine platforms. Computational and structural biotechnology journal, 19, 2508-2517. https://doi.org/10.1016/j.csbj.2021.04.061
Nguyen, H. X. (2025). Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination. Medicines, 12(1), 4. https://doi.org/10.3390/medicines12010004
Papania, M. J., Zehrung, D., & Jarrahian, C. (2017). Technologies to improve immunization. Plotkin's Vaccines, 1320. https://doi.org/10.1016/B978-0-323-35761-6.00068-7
Rasul, M. E., & Ahmed, S. (2023). Not all conservatives are vaccine hesitant: Examining the influence of misinformation exposure, political ideology, and flu vaccine acceptance on COVID-19 vaccine hesitancy. Vaccines, 11(3), 586. https://doi.org/10.3390/vaccines11030586
Rees, A. R. (2022). Immunological challenges of the “new” infections: Corona viruses. A New History of Vaccines for Infectious Diseases, 395. https://doi.org/10.1016/B978-0-12-812754-4.00017-0
Reynolds, L., Dewey, C., Asfour, G., & Little, M. (2023). Vaccine efficacy against SARS-CoV-2 for Pfizer BioNTech, Moderna, and AstraZeneca vaccines: a systematic review. Frontiers in Public Health, 11, 1229716. https://doi.org/10.3389/fpubh.2023.1229716
Siani, A. (2024). A Review of Global Inequities in COVID-19 Vaccination Access and Uptake. The Landscape of Global Health Inequity, 57-69. https://doi.org/10.1007/978-3-031-60502-4_6
Silva-Pilipich, N., Beloki, U., Salaberry, L., & Smerdou, C. (2024). Self-amplifying RNA: a second revolution of mRNA vaccines against COVID-19. Vaccines, 12(3), 318. https://doi.org/10.3390/vaccines12030318
Sinumvayo, J. P., Munezero, P. C., Tope, A. T., Adeyemo, R. O., Bale, M. I., Nyandwi, J. B., ... & Adedeji, A. A. (2024). Advancing vaccinology capacity: education and efforts in vaccine development and manufacturing across Africa. Vaccines, 12(7), 741. https://doi.org/10.3390/vaccines12070741
Tan, J. S., Jaffar Ali, M. N. B., Gan, B. K., & Tan, W. S. (2023). Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opinion on Drug Delivery, 20(7), 955-978. https://doi.org/10.1080/17425247.2023.2228202
Tracy, L. (1995). Negotiation: an emergent process of living systems. Behavioral science, 40(1), 41-55. https://doi.org/10.1002/bs.3830400106
Wang, Y., Ling, L., Zhang, Z., & Marin-Lopez, A. (2022). Current advances in Zika vaccine development. Vaccines, 10(11), 1816. https://doi.org/10.3390/vaccines10111816
Xu, M., Wei, S., Duan, L., Ji, Y., Han, X., Sun, Q., & Weng, L. (2024). The recent advancements in protein nanoparticles for immunotherapy. Nanoscale, 16(25), 11825-11848. https://doi.org/10.1039/D4NR00537F